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Error Analysis of the Algorithm for Shifting the 
Zeros of a Polynomial by Synthetic Division 

By G. W. Stewart 1H* 

Abstract. An analysis is given of the role of rounding errors in the synthetic division 
algorithm for computing the coefficients of the polynomial g(z) = f(z + s) from the coeffi- 
cients of the polynomial f. It is shown that if Iz + sl -l z + Ist then the value of the 
computed polynomial g*(z) differs from g(z) by no more than a bound on the error made 
in computing f(z + s) with rounding error. It may be concluded that well-conditioned 
zeros of f lying near s will not be seriously disturbed by the shift. 

1. Introduction. Let the polynomial 

f(z) = ao + alz + ... + a.z 

have the zeros rl, r2, , r,. Then the polynomial 

g(z) =f (z + s) = bo + blz + + bnz 

has zeros r - s, r2 - * *, rn - s. The coefficients of g may be evaluated by re- 
peated synthetic division: 

b"-," a.-j, (i = , 1, **,n), 

(I. 1) b (k) =b(k-1), (hc = , 1,I*, n), 
(k+1) k (k 

bnil= bn-i + sbn-)i+l, (i = 1, 2, , k + 1; k = 0, 1, , n - I). 

The coefficients of g are then given by bi = b'). This scheme is a rearrangement 
of the usual synthetic division algorithm; however, the two are computationally 
equivalent. The purpose of this note is to analyze the effects of rounding error on 
the algorithm defined by (1.1). 

2. The Principal Result. We shall assume that all calculations are carried out 
in complex floating-point arithnmetic. Specifically, let fl(a o b) denote the result of 
executing the binary operation o in floating-point arithmetic. Then, we shall assume 
that there is a number X such that 

fl(a i b) = aa ? bg3, 
and 

f l(ab) = aby, 
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where 

(2.1) -I, lo- 1, 1f- 11? I - 1. 

For brevity, the following notational convention will be observed. A lower case 
Greek letter, say q, will denote a number presumed to be near unity, and 

A= 71 - 1 

In this notation, the bounds (2.1) become 

Ia1 
A 

: I AI 
A 

< X, 

The results of this note are closely connected with the problem of evaluating 
the polynomial f in the presence of rounding error. This is usually done by synthetic 
division, and the value of f(s) is given by bIn) in (1.1). The following theorem is well 
known [1, p. 50]. 

THEOREM 2.1. Let fl(f(s)) lenote the comnputed value of b'n'. Then 

f l(f(s))- aoao + a,a,s + + a,ocis", 

where 

2n 
- 1 

and 

ia, i 2 Si+ I_ 1, (i-=0, I, n n- 1). 

Thus, the computed value of f(s) is the exact value of a polynomial whose coeffi- 
cients differ from those of f by small relative amounts. 

COROLLARY 2.2. Let 

f.(z) = lao + la,l x + + ? fan z. 

Then 

If l(f(s)) - f(s)/ C (I - l)fa(IZI) 

For the shifting algorithm, a nice result would be an analogute of Theorem 2.1 
stating that the polynomial g computed with rounding error from (1.1) is the poly- 
nomial that would be obtained by applying (1.1) without rounding error to a poly- 
nomial slighltly perturbed from f. This is not true in general. For example, if the 
algorithm is applied in four-digit decimal arithmetic to the polynomial 

f(z) - 427.8z - 1.610, 

with shift s 416.9, the result is the polynomial 

g(z) = z2 + 406.Oz - 4546. 

In fact, g is the polynomial obtained by applying (1.1) with s = 416.9 exactly to 
the polynomial 

2 

h(z) = Z - 427.8z - 2.210, 

whose low order coefficient differs considerably from that of f. 
However, the following analogue of Corollary 2.2 holds. 
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COROLLARY 3.2. Let g denote the polynomial obtained when the algorithm (1.1) 
is carried out with rounding error. Then 

I g(z) f z + s) ? (2f 1 )ta(ZI + |sl). 

Thus when 

(2.2) lzj + 1st _ lz + sj, 

that is, when z lies in the directioni of the shift or when z is small, the error in g(z) 
has the same bound as the error made in evaluating f(z + s) with rounding error. 
This is true of the example given above. On the other hand, g(-416.9)- -2.210, 
which differs considerably from f(O). This is to be expected, since z - -416.9 does 
not satisfy (2.2). 

In conjunction with Rouche's theorem, Corollary 3.2 suggests that the shifting 
algorithm will nlot perturb zeros near the shift by much more than they would be 
perturbed by the act of rounding the coefficients of f. 

3. The Principal Theorem. From the Eqs. (1.1) which define the shifting algorithm 
it follows that the b(k) satisfy the matrix equation 

bn(k+I) s1 b(k) 

(3.1) b 

lb ( l) s I , a -'k-1s 

From this, it is seen that the vector b(k) = (b (k), b,1, (A* ,b may be obtained 
by premultiplying the vector a(k) = (a,,, a-1, .*. , an k)' by a unit lower triangular 
matrix Lb of order k + 1. The idea of the following error analysis is to show that 
the vector b(k), calculated with rounding error, may be obtained by multiplying 
ak) by a perturbed matrix Lk + Gk, where the elements of Gk are small. 

Let the (i, j)-element of Lk be l5'k, (i, j 1, 2, , k + 1). Let l(+2,k+2 = 1, 
and for all other (i, j) d$ 1i, 2, , k + 1} X {1, 2, *., k + 1}, let l(k) 0 
(n.b., these last defined l() are not elements of L,,). Then, from (3.1), it follows that 

= l(k+ _-I(k) +i51(k) (i, j 1, 2, k + 2). 

Since 

LI 

Is1 

it follows by an easy induction that 

(k= st'C(k-j + 1, i - j), (i, j= 1, 2, * *, k + 1). 

Here C(m, n) denotes the binomial coefficient m!/[n!(m - n)!] and is assumed to 
be zero for n > m. 



138 G. WV. STEWART III 

Suippose now that the bWk) represent computed values. Then 
(k. 1) (k (k) k 

(3.2) bn1, = b,,e) + sb),41ak) 

(i = 1, 2, , k + 1; k = 0, 1, , n- 1), 

where 

l() < A, 

8 k) & < 2Z_ 

Let e5k, 5(k) 1 when i and k fall outside the bounds in (3.2). 
THEOREM 3.1. Let b(k) denote the computted vector. Thena 

b(k) (Lk + Gk)a 

where the (i, j)-element of G, is ( and 

(k) = , 

(3.3) [A7k) < )k+i- - 1, (1 2, 3, k * * , k + 1), 
. 5()j < k4i-2i+2 

- , (j 3 2, 3, * * * ,k + 1; i j, j + , k + 1). 

Proof. The proof is by induction. Throughout the proof, the symbols e and a 
will be used generically for the e-k and 5'k)* 

For k = 1, define G, by 

LI + G1 
I 

K 2 

IsS 

so that 

= (L1 + GI) 

Moreover 

[t 01 

Hence, the y9) satisfy (3.3). 
Assume that Gk is given and the y<9 satisfy (3.3). Consider the quantity 

~k-+ 1) 1~~) () (k) + Si(k) i (kAl i (A) 
) = + slY TOy 

i 
;.-1,j6i- (i, j = 1, 2, 

* * 
. 

k + 2). 

Then, it is easily verified that the matrix Lk,, + Gk+l, whose (i, j)-element is g k+ l) 

produces the vector b 1) when it premultiplies the vector a'(+1) Moreover, since 

irg ()) arg (s -j) = arg( i)) 

= 
t ( = (1Vk + Sj1k)1,i)yk, 1) i(k-I) (k+ 1) 

gii ~ ~ ~~~~~~l i' 'y 

where 

ij@ +]1 I nmax {IY;E - II, -k _ 1I. 

But. for j 1, 

IVe - If I 7k "t-I - 
1 = +i 1, 
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and 

I(k)l ^ - 1 < k+i-2 2 _ k+i 

For j > 1, 

jyYie-E 1<1 ? 7k+i2j+2, 1 - k+i-2i+3 

and 

|zk-1, _ - k+i-2i+l1 2 - 1 = Ic+i--2i -t 

Hence, the y(k+1) satisfy (3.3). In particular 
A() <??n- 1. 

This completes the proof of the theorem. 
To establish Corollary 3.2, let g(z) be the computed shifted polynomial. Then 

n+1 n+1 n4-1 
n-i 4 l _ I -i+1 l n) (it) 

g(z) = bn_ - > 2 l Z a.-j+I 
i=1 n i j=1 

n?1 sn1 
= a.-i4 1 E Z S C(n - i + 1, ij -j),, 

ij-1 i=i 

n+1 n+1 n4I 

- E.2 aa,-+1(z + s)'i' + > a.j+j >zn- ; Flst-C(n j + 1, i -, 
jli j-l ~ i-j 

= f(z + s) + e(z), 

where 
n+1 n+1 

e(z) = E an .+1 E zn1sistC(n - i + 1, i - W) 

Hence 
n+1 I+I 

le(z)I I (21 - 1) > la,1.+lI IEzi n-i+ I sl' ' C(n - i + 1, i -j) 
i-i i j 

n+1 

= (2 - 1) 12 Ian i+ 1| (Izi + IsI)D' 

- 

(72f 

- 

l)fa(IzI + Isi). 

This proves Corollary 3.2 stated in the last section. 
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